
www.manaraa.com

Towards An Improved Evaluation Metric For  Object Database
Management Systems

Somnath  Banerjee  &  Charles Gardner
Texas  Instruments

        email:  sbanerjee@ti.com,  phone: (214) 575.5953

Abstract
With the emergence of Object Technology,  Object Oriented Database Systems are becoming increasingly important.
However, there is very little information for users to evaluate these databases from the perspective of their own
requirements.   Based on the experiences of both traditional and Object databases, it is strongly felt that several
features other than the mere performance are equally, if not more important in order to evaluate a Database system.
These features include backup/recovery, online database compaction, multiuser support, clustering, security and
automated monitoring.    This paper first introduces the current benchmarks, discusses their limitations, then the so
called 7 by 24 features are introduced for inclusion  in  a future OODBMS evaluation metric.

1. INTRODUCTION
We are witnessing a very interesting transition period.   More and more computing environments

are making the shift from monolithic mainframe architecture to a distributed Client/Server architecture
[1].  Another key feature of this transition is the migration to Object Technology from traditional
computing paradigms.   Texas Instruments has been a pioneer in such migration. The 1MMST/WORKS

program was one of the first Object Oriented Computer Integrated Manufacturing system.   TI is in the
process of rolling mission critical applications based on this technology to production.  By the end of
1996,  key wafer manufacturing plants will make the transition to a complete Object Oriented System.  By
the end of 1997 almost all TI Fabs [22 in number WorldWide] will experience this migration.

A key component of this change is an Object Oriented Data Base.  The architects of this system
realized early  that a complete Object Orientation is desirable from the Client GUI end to the persistent
object storage end [ 2].   In the process of this development and also as a result of prolonged interaction
with the developers/maintainers of the traditional systems the authors of this paper have discovered what a
PRODUCTION  OODBMS should look like.  This paper emphasizes features which seem to be
absolutely indispensable to support a  24 by 7 by 365 manufacturing site where a downtime of one hour
can translate to a loss of business of millions of dollars.

Object databases are a fairly recent technology.  They were first commercially available in the
year 1988.  This technology, even though maturing very rapidly, still has  ways to go in order to achieve
full industry strength.   One of the key things which is lacking is an evaluation metric for OODBMS.
While performance benchmarks are important,  a complete metric should take both features and
performance into account in order to evaluate a database.  We feel that such a metric would not only help
a group identify an OODBMS when they are trying to make the transition like ours, but such metrics
would shape the direction of  present OODBMS industry to help it become more mature, more robust and
eventually more acceptable.  In this paper the authors try to briefly introduce the current benchmarks,
their shortcomings, and outline KEY items to consider in order to come up with  a set of  metrics   which
could be applied to evaluate an OODBMS.  These items are a result of direct experience of OODBMS
based development and deployment.

2. CURRENTLY  AVAILABLE  BENCHMARKS
There are 3 currently available benchmark and performance measurement metrics.  They are

o Object Operation One
o Hypermodel benchmark
o Object Operation Seven

Object Operation One [3] was the first of its kind and it provided excellent insight into the performance of
OODBMSs vs. relational DBs  highlighting the effects of  pointer navigation and lack of foreign key



www.manaraa.com

references.   Hypermodel benchmark provided a richer schema and wider operations.  Finally, Object
Operation Seven [ 4] introduced several key notions like complex objects, indexed vs nonindexed
transactions, traversals with updates and so on.   This benchmark has been both widely used and
controversial among the OODBMS community .

However,  all of these benchmarks are focussed on evaluating the database performance while
running an application.  They tell us about speed of traversal, update, creation and deletion of objects in
various forms of complexity.  This information, while being extremely valuable, is not sufficient to be
used as a metric to judge an OODBMS  which is intended to be used for a production system with high
uptime.

3. SHORTCOMINGS  OF THE  AVAILABLE  BENCHMARKS
These benchmarks keep several questions unanswered.   We present the ones which seem to be of

extreme importance in our context.    Some of the these are easy to quantify where as others are extremely
feature oriented in nature and hard to quantify.    For those which seem obvious, an attempt has been
made to quantify the attribute.

3.1 Multi User  Workload
First of all, none of these benchmarks specify a multiuser environment and multi user workload.

Effects of loading up an  OODBMS with 100- 150 sessions [with 10-15 active concurrent sessions] will
not only bring out the ability of the database to handle the workload but also throw light on the
concurrency semantics of the database. Please note that the number of sessions used here are arbitrary.

3.2 Reorganization/Clustering
How efficiently can the objects be clustered so that all related objects are close together.  This

would ensure locality of reference and hence aid performance.    This can be quantified by answering the
question   "How long does it take to cluster a database of  size X gigabytes with  Y number of objects ?"

3.3 Integrity Checking on the Database
Can the database perform integrity checks  without impacting transaction throughput ? Can it

check for corrupted objects and repair them? If it can do all these, how nonintrusive are such operations ?

3.4 Database Compaction
How  efficiently can the database handle unused objects and reclaim the space for future use ?

Can it discover unused or fragmented pages and compact them ?   This operation should not demand the
database to be taken offline or cause the currently logged sessions to experience a performance
degradation.   This can be quantified by answering the question "How long does it take to compact a
database of size X gigabytes ?  What is the performance degradation on transaction throughput ?"

3.5 Security
Can it plug in an external authentication system to the database?  Instead of using the database

provided userid/password authentication, the application site should have the flexibility to use an external
authentication system like Kerberos to override the database authentication system. Object level
authorization should be provided to make sure that certain classes or instance variables or instances can
only be accessed by sessions with the proper privilege assigned to them.    This might be purely a feature
and could be difficult to quantify.

3.6 Automated monitoring of the Database
How easy is it to build agents to monitor database activities eg.  size, freespace,  number of

commits etc.  The agents should not only detect events, but should be able to take corrective actions in
case of a problem.  For example, when the database is running out of space the agent should send a red
alert and also extend the repository by identifying another free filesystem or partition.  This again will be
a hard to quantify item as most database would have one or other form of monitoring.



www.manaraa.com

3.7 Versioning  Of  Objects
Does the database provide versioning of Objects ?  This is very key in maintaining history

information and supporting activity based cost and other MIS applications.

3.8 Object  Migration
How easy is it to perform object migration and schema evolution?   One of the key promises of

Object Oriented Paradigm is ease of  maintenance.  In the case of a production system this translates to
modification of only selected methods and classes instead of recompiling the whole system.  The database
should also provide a very smooth transition of the schema and objects to facilitate this feature.  The
question is what impact does object migration/schema evolution have on avilability.   This could be
quantified by answering the question "How long will it take to migrate a database of size X gigabytes with
Y number of objects ? Does the database needs to be taken offline for such operation? "

3.9 Multi database support
Can the database be designed to integrate with other databases ?  Legacy systems still implement

most of application components.  Many architects are willing to migrate to an OODBMS solution but
frozen because of the potential loss of a seamless access to relational tables.     One method of quantifying
this may be to define a relational table with standard access patterns.  Measuring the access time of the
contents of the relational table from the OODBMS space could be a metric of multi database support.

3.10 Very Large Data Bases
 With the information age experiencing an exponential explosion,  architects are dreaming of

huge databases. How does the database scale up to sizes of the order of 40-50 gigabytes ?   Are features
like cursors implemented to support huge database queries ?

3.11 Optimization Of Queries and indexing
What are the features for  query optimization and indexing of collections ?  How difficult it is to

maintain the indices? What is the cost of using indices ?  The cost of building and maintaining indices
could be easily built on top of an existing  benchmark like OO7.

3.12 Online Line Backup /   Fastest Recovery
The current benchmarks does not tell us about the capabilities of  online backup,  fault tolerance

of the database (ie.  keeping the application transparent to a disk or system crash).  One of the toughest
challenges provided to us is RECOVERY.   In case of a crash, the database has to be brought online
within an hour's time.  This might be a very tall order when we are talking about a database greater than a
few Giga bytes in size.  This can be quantified by answering the question "How long does it take to
recover a database of size X  gigabytes?"

4. OUR  EXPERIENCE

4.1 System  Description
  During pre-deployment stress testing of a distributed reporting (DR) application we had the
opportunity to closely examine the factors within the database which affected the performance of the
application.  The DR application has an OO model of a mainframe manufacturing system.  As
transactions happen on a mainframe, messages are sent to the OODB via communication link between the
mainframe and the OODB.  The database keeps information about initial, current and previous work in
progress.  The DR application is being deployed on either SparcCenter 1000's or  Sparc 20's.

The database can range from 150 MB to 350 MB in size.  The stress tests were conducted with a
350 MB database.  The collection sizes maintained for reporting were between 12K and 15K.  The
primary collection had 5 sets of indices which are database provided and two others which are application
provided. The SS1000's run approximately 40 users including feed programs and related servers.
Transaction feeds from the mainframe  are at 30/40 per minute on average, with highs at 70 to 80



www.manaraa.com

transactions/min.  This does not count reporting transactions which averaged 4 - 5 concurrent users at any
one time.  The system was tested at 30 concurrent logged in sessions.  This application used the Gemstone
Database from Gemstone Systems Inc.

Texas Instruments has been using the Gemstone database to implement and deploy various other
applications other than the one used in this discussion.  Many of these, including the DR application is
running production in a 7 by 24 fashion in one or more wafer fabs.   Our architects feel that this would
have been an extremely difficult task using any other commercially available OODBMS with our
architecture.    In the next section we outline some of the  features which surfaced to be very important for
our operations.

4.2 Lessons Learned
4.2.1 Multiple User

During multiuser testing we needed to be able to measure the amount of process interaction with
each other and with the shared page cache.  This interaction was very important in tuning the database
activities such as clustering and scavengeing to the required response time of the end user processes.
Collection of these data points allowed us to make necessary changes in either code or policy to get the
least amount of disruption of the reporting processes.  Statistics provided by the database allowed
monitoring of these data items.

4.2.2 Clustering
As a result of updating objects, clustering was being done to attempt to keep heavily used objects

together.  This activity have the potential to create two problems.  If the clustering of objects was done by
a separate process from the normal update process, concurrency problems would occur.  One process or
the other would get a failure to commit due to this action.  If we could always be sure the cluster operation
failed and not all the other update processes this might be acceptable.  The other problem is created if the
clustering is done by the same update process.  The commit record for the commit in which the clustering
was done tends to be very large and caused a disruption in the page allocation for all other processes.

4.2.3 Integrity Checking
Integrity checking could not be run on a live database.  Object audits required that no one be

logged in, which means that we would have to shutdown the database.  Currently the only solution is to
run object audits on a backup of the production database.

4.2.4 Compaction
Database maintenance activities such as de-fragmentation of the database and physical shrinking

of the database files needs to happen with little or no impact to running processes.  Typically,   these
activities create commit conflicts or are required to be run when no one is logged in.  Neither mode is very
acceptable.  In the case of the activities which move objects from one  page to another, the transaction
throughput is affected by these types of activities.  Perhaps conceptually, moving objects from one page to
another is the same type of activity within the database but should not create concurrency conflicts
between application processes and database processes.

Statistics supplied by the database allowed us to monitor the amount of garbage produced by each
process and the amount of garbage collected by the  epoch garbage collection process. We were able to
tune the  epoch with the use of these statistics.  We were also able to detect some flaws in design of our
feed application in terms of excessive garbage production using methods and processes supplied by
Gemstone Systems.  We had to code in the statistics collection if we wanted to measure transaction
boundary data vs time based data but those calls were commented out when in production.

4.2.5 Security
Security within the database is implemented using the internal  segment based authorization

mechanism provided by the database.  It allows protection at the object level and was relatively easy to
implement.  External authentication mechanisms to override the database provided mechanisms should be
provided to implement corporate wide security to ensure protection of highly sensitive data.



www.manaraa.com

4.2.6 Monitoring
The basic functionality to monitor the size of the database and related parameters were available.

We added some scripts to automate the activity and monitoring of database size.  The majority of the work
was done using awk scripts and cron task which were required to log onto the the database and append
information to a text file.

4.2.7 Object Migration
During releases of new object defintions, the migration of objects within the database was found

to be relatively minor.  We did not keep old objects around in any production database but were required
to migrate some information which could not be reloaded or was too time consuming to reload.  Once
methods were written to handle each migration level they could be built into the load scripts.

4.3 General remark
      The  experience and examples provided in this section may be too specific to the nature of the
application which we cited.  Some of these may or may not be applicable to provide the future direction to
the industry (which is the goal of this article).   Also it should be remembered that Object Databases are
still in their infancy and are undergoing a process of continous refinement.  Overall,  our experience has
been quite positive with our early decision to select an Object database.

5. TOWARDS   A  FUTURE  OODBMS  METRIC
Some work has been accomplished  to capture some of these features and perform a comparison

[5]. However,  the comparison seems to be subjective and lacks the preciseness presented in OO1 and
OO7.  There is no quantification of the features or capabilities.  We propose that some kind of
quantification be assigned to each of these capabilties so the ratings of the databases can be more objective
in nature.   A proper metric should very precisely define how to measure each of the features suggested in
section 3 and experienced in section 4.   This metric would then be truly reflective of a productionworthy
database with 24 by 7 by 365 operation.

6. CONCLUSIONS
This paper  emphasizes the features of a production Object database of the future.    Future work

should attempt to carefully define and quantify these items in order to capture it in the form of a
benchmark.  If the academic community develops a model to quantify these features eventually the
industry will come up with a benchmark and metric to evaluate  OODBMS from the perspective of the
aspects highlighted here.

REFERENCES
1. Thomas Atwood. Object Data Management: What's coming?  Object Magazine July-August

1994.
2. OODBMSs Gaining MIS Ground.  But RDBMSs Still Own the Road.  Software Magazine

November1994.
3. R.  Cattel and J.  Skeen.  Object Operations Benchmark.  ACM  Transactions on Database

Systems, 17(1),  March 1992
4. Michael J. Carey, David J. Dewitt, and Jeffrey F. Naughton.  The OO7 benchmark.  In

Proceedings of the 1993 ACM SIGMOD Conference on the Management of Data, Washington
D.C., May 1993.

5. D.  Barry.  ODBMS Feature coverage in the current market.  Object Magazine July-August 1995

                                                       
1MMST was a joint project between TI, ARPA and the Wright Laboratory to develop a complete Object
Oriented CIM system to run a wafer fab. 1989-1993.


